** Progress in Earth and Planetary Science is the official journal of Japan Geoscience Union (JpGU)

    ** Progress in Earth and Planetary Science is partly financially supported by a Grant-in-Aid for Publication of Scientific Research Results to enhance dissemination of information of scientific research.

    >>Japan Geoscience Union

    >>Links to 50 Committees

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles


    Atmospheric and hydrospheric sciences


    An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia

    Realini E, Sato K, Tsuda T, Susilo, Manik T.

    GPS, Radiosonde, PWV, Indonesia

    Spatial variations of GPS-derived PWV. Line (top) and matrix (middle) plots of GPS-derived PWV time series; inter-station standard deviation (bottom), every 30 s (solid line) and hourly (crosses). The number of available stations at each epoch is overlaid on the bottom plot as a dashed line.

    A campaign was conducted from 23 July to 5 August 2010 to measure atmospheric precipitable water vapor (PWV) using five Global Positioning System (GPS) receivers, stationed at four different locations in Jakarta and Bogor, western Java, Indonesia. Radiosondes were launched at an interval of 6 h to validate the GPS-derived PWV data. The validation resulted in a root mean square error of 2 to 3 mm in PWV. The influence of atmospheric pressure and temperature on GPS-derived PWV was evaluated. A regular semi-diurnal pressure oscillation was observed, showing an amplitude ranging from 3 to 5 hPa, which corresponds to 1.1 to 1.8 mm in PWV. A nocturnal temperature inversion layer was observed in the radiosonde profiles, which resulted in an error of about 0.5 mm in PWV. From 26 to 29 July, there was a passage of distributed rain clouds over western Java, moving southwestward from the equator toward the Indian Ocean. A second precipitation event, with scattered rain clouds forming locally near Bogor, occurred on 2 August. Both events were observed also by a C-band Doppler Radar operated near Jakarta. The highest peak of GPS-derived PWV (about 67 mm) registered during the campaign occurred on 27 July, coinciding with the distributed rainfall event. Spatial variations in the estimated PWV between the four sites were enhanced before both the analyzed rainfall events, on 27 July and 2 August. Peaks in the temporal variability of PWV were also observed in conjunction with the two events. The results indicated a relation between the space-time inhomogeneity of GPS-PWV and rainfall events in the tropics.