** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its society members.

    >>Japan Geoscience Union

    >>Links to society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Atmospheric and hydrospheric sciences

    202309202309

    Integrated impact assessment of climate change and hydropower operation on streamflow and inundation in the lower Mekong Basin

    Steven Ly, Takahiro Sayama, Sophal TrySteven Ly, Takahiro Sayama, Sophal Try

    Hydropower, Lower Mekong Basin, River discharge, RRI model

    Water resources are key to economic development of the Mekong River Basin, but are threatened by climate change and affected by hydropower development. Knowledge of these drivers’ integrated impact on future hydrological alterations is limited, especially with respect to flood inundation in the lower basin. This study assesses streamflow and flood extent alterations by reservoir operations and climate change using the latest climate projections. A distributed hydrologic model is used to generate discharge and flood extent. Our findings indicate substantial changes in seasonal and annual peak discharge due to reservoir operations. Under the future hydropower scenario, the discharge at Kratie will change by + 28% ( − 10%) during the dry (wet) season. While the effects of hydropower operations vary by season, climate change tends to increase river discharge overall. Under the high-emission scenario, the wet seasonal flow at Kratie will increase by + 7% in the near-future (2026–2050), but change by -5% under integrated impact of climate change and reservoir operations. In the far-future, the wet seasonal flow at Kratie under climate change only (integrated impact) will increase by + 33% (+ 19%). Although climate change is the dominant driver of flow alterations, hydropower development is critical for reducing discharge and flood magnitude. Nonparametric statistical testing shows significant changes in the inundated area by up to + 37% during the projected periods.