** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Solid earth sciences

    202206202206

    Depth profile of frictional properties in the inner Nankai accretionary prism using cuttings from IODP Site C0002

    Riho Fujioka, Ikuo Katayama, Manami Kitamura, Hanaya Okuda, Takehiro Hirose

    Nankai Trough, Friction coefficient, Velocity dependence of friction, Clay minerals, Accretionary prism

    Depth profile of the friction coefficient, velocity dependence of friction (a–b) and critical slip distance (Dc) obtained via analysis of the cuttings at IODP Site C0002.

    We conduct frictional experiments using cuttings collected at Nankai Trough IODP Site C0002 over 980.5–3262.5 mbsf (meters below seafloor) depth interval to better understand the frictional properties through the accretionary prism. The experiments are conducted at the in situ effective normal stresses (9–37 MPa) under brine-saturated conditions, and the slip velocity is abruptly changed in a stepwise manner to either of 0.3, 3, or 33 µm/s after the steady-state friction is reached. The friction coefficient (μ) of the cuttings samples ranges from 0.45 to 0.60, with a slight increase in μ with increasing depth, related to decreasing smectite content. The velocity dependence of friction (a − b) is positive at all depths and ranges from 0.001 to 0.006, which indicates a velocity-strengthening behavior; these values are consistent with relatively homogeneous deformation microstructures. The critical slip distance (Dc) ranges from 0.5 to 123 μm, with relatively large values obtained for the smectite-rich samples. The changes in both the friction coefficient and rate- and state-friction parameters are likely associated with mineralogical change and consolidation with increasing depth. Although all of the cuttings samples collected from Site C0002 exhibit a velocity-strengthening behavior, a slight decreasing trend in a − b with increasing depth indicates either a nearly neutral velocity dependence or a possible transition to velocity-weakening behavior at greater depths, which may be attributed to the occurrence of slow earthquakes in the Nankai accretionary prism.