** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Solid earth sciences

    202201202201

    Right-lateral offset associated with the most recent earthquake on the Ikeda fault of the Median Tectonic Line, southwest Japan, revealed by ground-penetrating radar profiling

    Patria A, Kimura H, Kitade Y, Tsutsumi H

    Median Tectonic Line (MTL), Active fault, Ground-penetrating radar (GPR), 3D modeling, Earthquake geology

    Summary of observations on the GPR sections (a) and the geometry of the deformed paleochannel A (b, c).

    The Median Tectonic Line (MTL) is an arc-parallel strike-slip fault that accommodates much of the arc-parallel component of the oblique convergence of the Philippine Sea and Eurasian plates at the Nankai Trough. The MTL in Shikoku is one of the fastest-slipping faults in Japan, with a late Quaternary right-lateral slip rate of 5–10 mm/yr. To estimate the right-lateral slip amounts of the past faulting events on the MTL, we acquired 2D and pseudo-3D ground-penetrating radar (GPR) sections across the ENE-trending Ikeda fault of the MTL in eastern Shikoku. We conducted the GPR surveys at the Higashi-Miyoshi site, where two terrace riser offsets mark the active fault trace. The 2D lines were about 28–64 m long, and the pseudo-3D data were sized 20 m × 30 m with a 0.5-m inline spacing. We used 50 MHz GPR antennas and conducted wide-angle measurements to estimate the electromagnetic wave velocity. We identified three paleochannels on the final depth-converted GPR sections, and two of them are deflected by the fault. A paleochannel at 0.6–1.4 m depth is observed on all inline sections of the pseudo-3D GPR data. We built a 3D model of this paleochannel and estimated the right-lateral and vertical displacements of ~ 3.5 m and ~ 0.5 m, respectively. This paleochannel offset is probably caused by the most recent surface-rupturing earthquake on the Ikeda fault, which may be the 1596 Keicho-Fushimi earthquake. This study demonstrates the usefulness of the GPR surveys to identify geological features displaced laterally and vertically by the most recent surface-rupturing earthquake.