** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Solid earth sciences

    202110202110

    Forensic investigation of flowslides triggered by the 2018 Sulawesi earthquake

    Divyesh Rohit D, Hemanta Hazarika, Tsubasa Maeda, Wa Ode Sumartini, Takaji Kokusho, Siavash Manafi Khajeh Pasha, Sukiman Nurdin

    Capping layer, Forensic investigation, Large-scale flowslides, Sulawesi earthquake, Water film

    The Sulawesi earthquake with a moment magnitude of Mw 7.5 struck the Central Sulawesi region of the Sulawesi Island, Indonesia, on September 28, 2018. The epicenter of the earthquake was located in the mountainous region of Donggala Regency, in the neck of the Minahasa Peninsula in the Central Sulawesi Province of Indonesia. Although the epicenter was located in Donggala Regency, the greatest devastating effects were observed about 70 km south of the epicenter in the Palu Valley. The event was the first of its kind to cause large-scale flowslides simultaneously at four key locations such as Balaroa, Petobo, Jono Oge, and Sibalaya with extensive ground displacements ranging from several hundred meters to more than 1 km. This article reviews the field observations of geotechnical failures and infrastructure damage caused by liquefaction resulting from the shallow strike-slip earthquake at Palu City, Donggala Regency, and Sigi Regency. A geo-spatial analysis was performed on data collected from aerial drone imagery, along with portable dynamic cone penetration testing (PDCPT) in the field. The investigation revealed a highly stratified ground with alternating soil layers of varying permeability and very low bearing resistance at shallow depths. The investigation also helped in assessing the extent of damage caused by geotechnical failure to the residential infrastructures, irrigation structures, and roads.