** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles


    Atmospheric and hydrospheric sciences


    Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2

    Patra PK, Hajima T, Saito R, Chandra N, Yoshida Y, Ichii K, Kawamiya M, Kondo M, Ito A, Crisp D

    Carbon dioxide (CO2), Global and regional carbon cycle, Earth system model, Inverse model, Atmospheric chemistry transport model

    The measurements of one of the major greenhouse gases, carbon dioxide (CO2), are being made using dedicated satellite remote sensing since the launch of the greenhouse gases observing satellite (GOSAT) by a three-way partnership between the Japan Aerospace Exploration Agency (JAXA), the Ministry of Environment (MoE) and the National Institute for Environmental Studies (NIES), and the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2). In the past 10 years, estimation of CO2 fluxes from land and ocean using the earth system models (ESMs) and inverse modelling of in situ atmospheric CO2 data have also made significant progress. We attempt, for the first time, to evaluate the CO2 fluxes simulated by an earth system model (MIROC-ES2L) and the fluxes estimated by an inverse model (MIROC4-Inv) using in situ data by comparing with GOSAT and OCO-2 observations. Both MIROC-ES2L and MIROC4-Inv fluxes are used in the MIROC4-atmospheric chemistry transport model (referred to as ACTM_ES2LF and ACTM_InvF, respectively) for calculating total column CO2 mole fraction (XCO2) that are sampled at the time and location of the satellite measurements. Both the ACTM simulations agreed well with the GOSAT and OCO-2 satellite observations, within 2 ppm for the spatial maps and time evolutions of the zonal mean distributions. Our results suggest that the inverse model using in situ data is more consistent with the OCO-2 retrievals, compared with those of the GOSAT XCO2 data due to the higher accuracy of the former. This suggests that the MIROC4-Inv fluxes are of sufficient quality to evaluate MIROC-ES2L simulated fluxes. The ACTM_ES2LF simulation shows a slightly weaker seasonal cycle for the meridional profiles of CO2 fluxes, compared with that from the ACTM_InvF. This difference is revealed by greater XCO2 differences for ACTM_ES2LF vs GOSAT, compared with those of ACTM_InvF vs GOSAT. Using remote sensing–based global products of leaf area index (LAI) and gross primary productivity (GPP) over land, we show a weaker sensitivity of MIROC-ES2L biospheric activities to the weather and climate in the tropical regions. Our results clearly suggest the usefulness of XCO2 measurements by satellite remote sensing for evaluation of large-scale ESMs, which so far remained untested by the sparse in situ data.