** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Paper with full data attached

    Solid earth sciences

    202101202101

    Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS

    Morishita Y

    Automatic processing, Ground deformation, InSAR, Nationwide, Sentinel-1, Subsidence, Time series analysis

    73 target urban areas and examples of detected deformation time series

    Ground subsidence in urban areas is a significant problem because it increases flood risk, damages buildings and infrastructure, and results in economic loss. Continual monitoring of ground deformation is important for early detection, mechanism understanding, countermeasure implementation, and deformation prediction. The Sentinel-1 satellite constellation has globally and freely provided frequent and abundant SAR data and enabled nationwide deformation monitoring through InSAR time series analysis. LiCSAR, an automatic Sentinel-1 interferometric processing system, has produced abundant interferograms with global coverage, and the products are freely accessible and downloadable through a web portal. LiCSBAS, an open source InSAR time series analysis package integrated with LiCSAR, enables users to obtain the deformation time series easily and quickly. In this study, spatially and temporally detailed deformation time series and velocities from the LiCSAR products using LiCSBAS for 73 major urban areas in Japan during 2014–2020 were derived. All LiCSBAS processing was automatically performed using predefined parameters. Many deformation signals with various temporal and spatial features, such as linear subsidence in Hirosaki, Kujyukuri, Niigata, and Kanazawa, episodic subsidence in Sanjo, annual vertical fluctuation in Hirosaki, Yamagata, Yonezawa, Ojiya, and Nogi, and linear uplift in Chofu were detected. Unknown small nonlinear uplift signals were found in Nara and Osaka in 2018. Complex postseismic deformations from the 2016 Kumamoto earthquake were also revealed. All the deformation data obtained in this study are available on an open repository and are expected to be used for further research, investigation, or interpretation. This nationwide monitoring approach using the LiCSAR products and LiCSBAS is easy to implement and applicable to other areas worldwide.