** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Atmospheric and hydrospheric sciences

    202005202005

    What did determine the warming trend in the Indonesian sea?

    Iskandar I, Mardiansyah W, Lestari DO, Masumoto Y

    Decadal trend, ENSO, Indian Ocean Dipole, Mixed layer depth, Net heat flux, Precipitation, Sea surface temperature

    (a) Observed trend in sea surface temperature (SST) anomaly (°C/decade) over the Indonesian seas and its surrounding region during 1982–2014 estimated from NOAA OISST. Significant values above 95% confidence level are shaded.

    (b) Time series of area-averaged SST anomaly over the Indonesian sea (red; °C) and its corresponding linear trend (black; °C/decade) for 1982–2014.

    The Indonesian sea is the only low-latitude pathway connecting two tropical oceans, which plays an important role in the coupled ocean-atmosphere mode in the Indo-Pacific sector. A small change in the sea surface temperature (SST) in the Indonesian sea has a significant influence on the precipitation and air-sea heat flux. During the past 33 years, the SST in the Indonesian sea has indicated a warming trend on the average of 0.19 ± 0.04 decade−1, which is larger than global SST warming trend. Moreover, the warming trend indicates seasonal variations, in which maximum trend occurred during boreal summer season. Investigation on the potential driver for this warming trend, namely, the net surface heat flux, resulted in an opposite trend (cooling trend), while the Ekman pumping and the wind mixing only play a minor role on the SST warming. Here, we proposed the upper layer process associated with an increasing trend in precipitation and decreasing trend in mixed layer depth (MLD) for the SST warming within the Indonesian seas. Shoaling of MLD gives a favorable condition for the surface heat flux to warm the surface ocean. However, shoaling of MLD could not solely explain the total SST warming within the Indonesian seas. The seasonal dependence in the warming trend, highest during boreal summer, was significantly related to the Indo-Pacific climate modes, namely the negative Indian Ocean Dipole (IOD) and La Niña events. Higher warming trend observed in the south of Makassar Strait and in the eastern Indonesian seas, in the vicinity of the Maluku Sea and the northeastern part of the Banda Sea, was significantly associated with the La Niña event. Meanwhile, strong warming trend observed in the Karimata Strait and Java Sea, and in the Flores Sea south of Sulawesi Island seems to be enhanced by the negative IOD event. Our rough quantitative estimate of the possible mechanism leading to the SST warming suggests that other mechanism might be at work in warming the SST within the Indonesian seas. Horizontal heat advection associated with an increasing trend of the heat transport from the Pacific into the Indian Ocean by the Indonesian Throughflow (ITF) might play a role in causing the warming trend within the Indonesian seas. However, to what extend this heat advection could modulate the SST warming is still unresolved in the present study. Further study based on realistic model output as well as long-term observational records is necessary to describe the dynamics underlying the warming trend within the Indonesian seas.