** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Methodology

    Solid earth sciences

    2020620206

    Estimation of temporal and spatial variation of sound speed in ocean from GNSS-A measurements for observation using moored buoy

    Kinugasa N, Tadokoro K, Kato T, Terada Y

    GNSS-A, Seafloor crustal deformation, Buoy, Sound speed structure, CTD, Horizontal gradient

    Observation system on GNSS buoy for continuous monitoring of seafloor crustal deformation

    Using Global Navigation Satellite System–Acoustic (GNSS-A) technique, we have been developing observation system on a moored buoy for continuous monitoring of seafloor crustal deformation. The sound speed structure near a warm current has heterogeneity, which is the main cause of a seafloor positioning error. Assuming a sloping structure, previous studies proposed sound speed model to reduce positioning error. We examined the validity of the model by comparing the estimated structure with the actual structure measured at multiple points around our observation site. The result shows that the gradient parameter estimated from GNSS-A data acquired by vessel is appropriate. The numerical examination indicates that modeling error caused by the misinterpretation of the depth of gradient layer occurs, and it can be suppressed by performing acoustic ranging at the point near the centroid of units. From the calculation of estimation error of sound speed variation, the predicted acoustic ranging error observed using the moored buoy staying near the centroid is 9.0 cm or below. Therefore, seafloor displacement can be detected with centimeter class via moored buoy in the basin of a warm current.