** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 51 society members.

    ** Progress in Earth and Planetary Science is partly financially supported by a Grant-in-Aid for Publication of Scientific Research Results to enhance dissemination of information of scientific research.

    >>Japan Geoscience Union

    >>Links to 51 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Interdisciplinary research

    Influence of microclimate on the directional dependence of sandstone pillar weathering in Angkor Wat temple, Cambodia

    Waragai T, Hiki Y

    sandstone, microclimate, Angkor Wat temple, cultural heritage, moisture condition

    Hollow depths of sandstone inner pillar at galleries of Angkor Wat temple. Numbers of upright and italic show the average depth of outer hollow and the average depth of inner hollow, respectively.

    Angkor Wat temple, mainly composed of sandstone blocks, displays a type of religious architecture that signifies the worldviews of the Khmer and Hindu religions. The temple is a part of a UNESCO World Heritage site. However, there are numerous occurrences of hollows, i.e., depression-like notches, that have developed at the base of its sandstone pillars due to wet–dry and salt weathering. These pillars are variably weathered due to differences in the directions of the pillar surfaces and galleries in the temple. In this study, we analyze the differences in the hollow depths based on the sandstone hardness and water content, as well as a 5-year record of the temperature and humidity in the galleries. The results show that the hollow depths are profound in the outsides of the inner pillars and shallow on the northern side of the first gallery. The hollow depth increases with increasing values obtained by multiplying water content and moisture fluctuations, resulting from direct insolation together with rainfall.