** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 51 society members.

    ** Progress in Earth and Planetary Science is partly financially supported by a Grant-in-Aid for Publication of Scientific Research Results to enhance dissemination of information of scientific research.

    >>Japan Geoscience Union

    >>Links to 51 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Space and planetary sciences

    201802201802

    Unseasonal development of post-sunset F-region irregularities over Southeast Asia on 28 July 2014: 1. Forcing from above?

    Carter B, Tulasi Ram S, Yizengaw E, Pradipta R, Retterer J, Norman R, Currie J, Groves K, Caton R, Terkildsen M, Yokoyama T, Zhang K

    Equatorial Plasma Bubbles, GPS Scintillations, Ionosphere

    Global maps showing the locations of COSMIC radio occultation events for which the detected scintillation level exceeded 0.3 at F-region altitudes on 27 July 2014 (top panel), 28 July 2014, (middle panel) and 29 July 2014 (bottom panel).

    This contribution is the first of a two-part investigation into an unseasonal post-sunset equatorial F-region irregularity (EFI) event over the Southeast Asian region on the evening of 28 July 2014. Ground-based GPS scintillation data, space-based GPS radio occultation (RO) data, and ionosonde data show the existence of EFIs shortly after sunset over a region spanning 30° in longitude and 40° in latitude, centered on the geomagnetic equator. This post-sunset EFI event was observed during a time of the year when post-sunset equatorial plasma bubbles (EPBs) are very infrequent in the Southeast Asian longitude sector. GPS RO data shows that the EFI event over Southeast Asia coincided with the suppression of peak-season EPBs in the African and Pacific longitude sectors. Ionosonde data shows the presence of a strong pre-reversal enhancement (PRE) in the upward plasma drift over Southeast Asia prior to the detection of EFIs. Further, it is reported that this PRE was significantly stronger than on any other day of July 2014. An analysis of the geophysical conditions during this event reveals that this enhanced PRE was not caused by disturbed geomagnetic activity. Therefore, it is hypothesized that forcing from lower altitudes, perhaps tidal/planetary waves, was the potential cause of this strong PRE, and the subsequent EPB/EFI activity, on this day over the Southeast Asian sector.