** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Solid earth sciences

    202010202010

    Effect of hydraulic and mechanical characteristics of sediment layers on water film formation in submarine landslides

    Kawakita S, Asahina D, Takemura T, Hosono H, Kitajima K

    Water film, Pore pressure, Submarine landslides, Layer interface, Tensile strength

    Schematic representation of the tensile test for the two-layer specimen.

    Through two lab-scale experiments, we investigated the hydraulic and mechanical characteristics of sediment layers during water film formation, induced by elevated pore pressure—considered one of the triggers of submarine landslides. These involved (1) sandbox experiments to prove the effect of water films on mass movement in low slope gradients and (2) experiments to observe the effect of the tensile strength of semi-consolidated sediment layers on water film formation. Portland cement was used to mimic the degree of sediment cementation. We observed a clear relationship between the amount of cement and pore pressure during water film formation; pressure evolution and sediment deformation demonstrated the hydraulic and mechanical characteristics. Based on the results of these experiments, conditions of the sediment layers during water film formation are discussed in terms of pore pressure, permeability, tensile strength, overburden pressure, and tectonic stresses. The results indicate that the tensile strength of the sediment interface provides critical information on the lower limit of the water film formation depth, which is related to the scale of potential submarine landslides.