** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Space and planetary sciences

    201912201912

    The chemical case for Mercury mantle stripping

    George Helffrich, Ramon Brasser, Anat Shahar

    Mercury, Vesta, Sulfur, Silicon, N-body simulation, Meteorites, Stable isotopes.

    Mercury, the Solar System’s innermost planet, has an unusually massive core prompting speculation that the planet lost silicate after it formed. Using the unusually high sulfur and low iron composition of its surface and space geodetic constraints on its core composition, we show Mercury’s chemistry to be compatible with formation in a larger planet at minimum 1.4–2.5 times Mercury’s present mass and possibly 2–4 times its mass by similarity with other rocky Solar System bodies. To do this, we apply an experimentally determined metal-silicate partitioning model for sulfur to Mercury’s silicate. The model is validated by applying it to Vesta, which, when evaluated at the conditions of Vestan self-differentiation, yields sulfur contents in its silicate in the range of HED meteorites. Mercury could have lost a substantial fraction of its rocky material through impacts or by being itself a remnant impactor. Independent of any stripping, because a significant amount of silicon resides in Mercury’s core, silicate meteoritic debris from Mercury would likely be characterized by 30Si isotopic enrichment >+ 0.10‰ relative to parent sources that could aid identification of a new meteorite class.