** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Interdisciplinary research

    Biomass burning history in East Asia during the last 4 million years recorded in elemental carbon variability at IODP Site U1423

    Lu S., Irino T., and Igarashi Y.

    biomass burning, element carbon, IODP Expedition 346 Site U1423

    Elemental carbon grain size and higher temperature biomass burning proxy constructed at IODP Exp. 346 Site U1423 for the last 3 Myr.

    The burning of trees and grasses produces charred particles, such as charcoal and soot, that can be transported over long distances via winds and rivers to coastal, deltaic, and ocean environments, where they are preserved in sediments. Charcoal contained in sediments has been widely used as a proxy for biomass burning and human activities as well as climate change. Charcoal and soot in Cenozoic marine sediments at Integrated Ocean Drilling Program (IODP) Expedition (Exp.) 346 Site U1423 were measured to examine the regional history of biomass burning in East Asia.

    Charcoal and soot were measured as elemental carbon (EC) in coarse (>2 µm) and fine (<2 µm) fractions using grain size separation by repeated settling followed by application of a thermal optical transmittance (TOT) method. Organic carbon (OC) was also quantified during the process. EC and OC in both coarse and fine fractions are higher from 0 to 1.8 Ma and lower from 1.8 to 4.3 Ma but have large variations, which suggest more frequent or intense biomass burning since 1.8 Ma. Terrestrial biomass and precipitation could be major controls on the EC supply. Fine EC varies independently from coarse EC, which suggests a remote origin of fine EC. Large increases in terrestrial vegetation cover have led to high temperature burning, which is associated with interglacial stages.