** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    ** Progress in Earth and Planetary Science is partly financially supported by a Grant-in-Aid for Publication of Scientific Research Results to enhance dissemination of information of scientific research.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Biogeosciences

    201710201710

    Weak hydrothermal carbonation of the Ongeluk volcanics: evidence for low CO2 concentrations in seawater and atmosphere during the Paleoproterozoic global glaciation

    Shibuya T, Komiya T, Takai K, Maruyama S, Russell M J

    Paleoproterozoic global glaciation, Ongeluk volcanics, Carbonation, Carbon and oxygen isotopes, Seawater/atmosphere CO2 level

    Secular change of CO2 (as carbonate) content in the altered subseafloor crust

    It was previously revealed that the total CO2 concentration in seawater decreased during the Late Archean. In this paper, to assess the secular change of total CO2 concentration in seawater, we focused on the Paleoproterozoic era when the Earth experienced its first recorded global glaciation. The 2.4 Ga Ongeluk Formation outcrops in the Kaapvaal Craton, South Africa. The formation consists mainly of submarine volcanic rocks that have erupted during the global glaciation. The undeformed lavas are mostly carbonate-free but contain rare disseminated calcites. The carbon isotope ratio of the disseminated calcite (δ13Ccc vs. VPDB) ranges from − 31.9 to − 13.2 ‰. The relatively low δ13Ccc values clearly indicate that the carbonation was partially contributed by 13C-depleted CO2 derived from decomposition of organic matter beneath the seafloor. The absence of δ13Ccc higher than − 13.2‰ is consistent with the exceptionally 13C-depleted CO2 in the Ongeluk seawater during glaciation. The results suggest that carbonation occurred during subseafloor hydrothermal circulation just after the eruption of the lavas. Previously, it was reported that the carbonate content in the uppermost subseafloor crust decreased from 3.2 to 2.6 Ga, indicating a decrease in total CO2 concentration in seawater during that time. However, the average CO2 (as carbonate) content in the Ongeluk lavas (<‚ÄČ0.001 wt%) is much lower than those of 2.6 Ga representatives and even of modern equivalents. This finding suggests that the total CO2 concentration in seawater further decreased during the period between 2.6 and 2.4 Ga. Thus, the very low content of carbonate in the Ongeluk lavas is probable evidence for the extremely low CO2 concentration in seawater during the global glaciation. Considering that the carbonate content of the subseafloor crusts also shows a good correlation with independently estimated atmospheric pCO2 levels through the Earth history, it seem highly likely that the low carbonate content in the Ongeluk lavas reflects the low atmospheric pCO2 at that time. We conclude that the continuous decrease in CO2 concentration of seawater/atm. from 3.2 Ga was one of the contributing factors to the Paleoproterozoic global glaciation.