** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 51 society members.

    ** Progress in Earth and Planetary Science is partly financially supported by a Grant-in-Aid for Publication of Scientific Research Results to enhance dissemination of information of scientific research.

    >>Japan Geoscience Union

    >>Links to 51 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Research

    Atmospheric and hydrospheric sciences

    201708201708

    Potential impact of sea surface temperature on rainfall over the western Philippines

    Dado J M B and Takahashi H G

    Summer monsoon, Rainfall, Sea surface temperature, Regional climate model

    Spatial map of the regression coefficients (mm K−1) of the sensitivity of monthly rainfall to the monthly SST anomaly of the WSST reference region for 1982–2012 for the months of a June, b July, and c August. Significant values at the 90% significance level are marked with plus signs, as determined by the correlation coefficients based on 29 degrees of freedom. The rainfall anomalies were remapped to a 1° grid resolution. This figure shows that positive SST anomalies west of the Philippines induced positive rainfall anomalies in the northwestern Philippines via an increase in latent heat flux from the sea surface, implying that summer monsoon rainfall in the northwestern Philippines is modulated by interannual variations in SST west of the Philippines.

    The study used a 5 km-resolution regional climate model, the Advanced Research Weather Research and Forecasting Model, to quantify the potential impact of sea surface temperature (SST) west of the Philippines on summer monsoon rainfall on the northwestern coast of the country. A set of control simulations (CTL) driven by ERA-Interim reanalysis data and the monthly National Oceanic and Atmospheric Administration Optimum Interpolation SST dataset was performed for the months of June to August of 1982–2012. A second set of simulations driven by climatological SST values was performed for the same period. The difference between these two simulation sets is analyzed to determine the sensitivity of rainfall to interannual variations in local SST, not remote SST, via a regional climate model. The CTL simulations represented spatial and temporal variations in rainfall well, yielding realistic climatological rainfall values with high spatial correlations with observations. The interannual correlation of monthly rainfall over the northwestern region of the Philippines was also high when compared to observations. The results showed that positive SST anomalies west of the Philippines induced positive rainfall anomalies in the northwestern Philippines via an increase in latent heat flux from the sea surface, implying that summer monsoon rainfall in the northwestern Philippines is modulated by interannual variations in SST west of the Philippines. The impact of SST on latent heat flux and rainfall were 20–40%, greatly exceeding the 7% approximation from the Clausius–Clapeyron equation, which can be explained by the enhancement of low-level winds and a weak warming of surface air temperature over the ocean.