** Progress in Earth and Planetary Science is the official journal of the Japan Geoscience Union, published in collaboration with its 50 society members.

    ** Progress in Earth and Planetary Science is partly financially supported by a Grant-in-Aid for Publication of Scientific Research Results to enhance dissemination of information of scientific research.

    >>Japan Geoscience Union

    >>Links to 50 society members

    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    • Progress in Earth and Planetary Science
    Progress in Earth and Planetary Science

    Gallery View of PEPS Articles

    Review

    Space and planetary sciences

    201608201608

    Extreme geomagnetically induced currents

    Kataoka R, Ngwira C

    Geomagnetically induced currents, Magnetic storms, Auroral substorms, Sudden commencements, Solar energetic particles

    Emergency alert framework for geomagnetically induced currents. The equatorward boundary of the auroral oval according to the model of Yokoyama et al. (1998) is shown by the solid curve, and the dotted curve shows its theoretical extrapolation. It is important to update the possible extension of the auroral oval toward middle to low latitudes during extreme magnetic storms.

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of dB/dt, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude dB/dt values are the major cause of hazards associated with three different types of GICs: (1) slow dB/dt with ring current evolution (RC-type), (2) fast dB/dt associated with auroral electrojet activity (AE-type), and (3) transient dB/dt of sudden commencements (SC-type). We set “caution,” “warning,” and “emergency” alert levels during the main phase of superstorms with the peak Dst index of less than −300 nT (once per 10 years), −600 nT (once per 60 years), or −900 nT (once per 100 years), respectively. The extreme dB/dt values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a “transient alert” is also proposed for dB/dt values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.